



# **Environmental Product Declaration**

This Environmental Product Declaration (EPD) is for 12 concrete aggregate products manufactured by Vulcan Materials Company at their Pleasanton, California Sand and Gravel facility.

Vulcan Materials Company, Western Division 500 North Brand Blvd. Suite 500 Glendale, CA 91203-1923

# General Information

### **Environmental Product Declaration**

This Environmental Product Declaration (EPD) is a non-verified environmental declaration for 12 concrete aggregate products manufactured by Vulcan Materials Company at their Pleasanton, California Sand and Gravel facility. This EPD results from a Life Cycle Assessment (LCA) conducted in accordance to the International EPD® System Construction products and Construction services product category rule (PCR).

This EPD does not conform to the ISO 14025 standard for Type III EPD's which are subject to the administration of a program operator and independent verification. Upon publication of a U.S. centric PCR, currently being developed by ASTM, Vulcan Materials Company will update this LCA to conform to the new PCR and then undergo independent verification with a program operator to publish a Type III EPD.

### **Product Category Rule:**

International EPD® System: PCR 2012:01 Construction products and Construction services, Version 2.0, 2015-03-03.

#### **Functional Unit:**

This EPD covers only the cradle-to-gate impacts of manufactured concrete aggregate products using a declared unit of 1 metric ton.

climate earth

#### LCA and EPD Developer:

Laurel McEwen

laurel.mcewen@climateearth.com

Climate Earth, Inc.

2150 Allston Way, Suite 320 • Berkeley, CA 94704

(415) 391-2725 • http://www.climateearth.com

## Date of Issue:

January 13, 2016

#### **Products**

The 12 concrete aggregates covered in this EPD are given in Table 1 and descriptions of each mix and their application are provided below. These products are compliant with the following standards and specifications:

- UN CPC 1531 Natural sands
- UN CPC 1532 Pebbles, gravel, broken or crushed stone
- ASTM C33 Concrete Aggregates

Table1: Aggregates Covered in this Study

| Aggregate                        | Abbreviation |  |  |  |  |  |
|----------------------------------|--------------|--|--|--|--|--|
| Pleasanton 3/4" Crushed          | 3/4" Cr      |  |  |  |  |  |
| Pleasanton 1/2" Crushed          | 1/2" Cr      |  |  |  |  |  |
| Pleasanton 3/8" Crushed          | 3/8" Cr      |  |  |  |  |  |
| Pleasanton Rock Dust             | RD           |  |  |  |  |  |
| Pleasanton Manufactured Sand     | MFG Sand     |  |  |  |  |  |
| Pleasanton Class II Base         | C2Base       |  |  |  |  |  |
| Pleasanton Class II Perm         | C2Perm       |  |  |  |  |  |
| Pleasanton Crushed Class II Perm | C2PermCr     |  |  |  |  |  |
| Pleasanton 1" X #4               | 1" X #4      |  |  |  |  |  |
| Pleasanton 3/4″ X #4             | 3/4" X #4    |  |  |  |  |  |
| Pleasanton 3/8" Pea Gravel       | PG           |  |  |  |  |  |
| Pleasanton Top Sand              | WCS          |  |  |  |  |  |

#### Pleasanton 3/4" Crushed



A 3/4" crushed aggregate which must have 100% passing the 1" sieve and may have material retained on the 3/4" sieve.

Typically an asphalt aggregate but

can also be used in concrete and may be used in other applications.

#### Pleasanton 1/2" Crushed



A 1/2" crushed aggregate which must have 100% passing the 3/4" sieve and may have material retained on the 1/2" sieve.

Typically an asphalt aggregate but

can also be used in concrete and may be used in other applications.

### Pleasanton 3/8" Crushed



A 3/8" crushed aggregate which must have 100% passing the 1/2" sieve and may have material retained on the 3/8" sieve.

Typically an asphalt aggregate but can also be used in concrete and may be used in other applications.

#### Pleasanton Rock Dust



A fine sand-like material which is a by-product of crushing aggregates. Material must have 100% passing the 3/8" sieve. Typically an asphalt aggregate but can also be used in

concrete and may be used in other applications.

## General Information

#### Pleasanton Manufactured Sand



A sand-like material that has 100% passing the 3/8" sieve and may be produced using crushed fine materials. Typically an asphalt aggregate but can also be used in

concrete and may be used in other applications.

#### Pleasanton Class II Base



A 3/4" Class II aggregate base using only natural materials. Used in roadways as a base course in pavements and may be used in other applications.

#### Pleasanton Class II Perm



A permeable material used for drainage applications and may be used in other applications. Conforms to the specifications of Caltrans Section 68 (State of California, n.d.).

#### Pleasanton Crushed Class II Perm



A crushed permeable material used for drainage applications and may be used in other applications.

#### Pleasanton 1" X #4



A 1" aggregate that has 100% passing the 1 1/2" sieve with 95-100% passing the 1" sieve.

Typically used as a concrete aggregate and may be used in

other applications. Sometimes referred to as #57 aggregate.

#### Pleasanton 3/4" X #4



A 3/4" aggregate that has 100% passing the 1" sieve with 95-100% passing the 3/4" sieve. Typically used as a concrete aggregate and may be used in

other applications. Sometimes referred to as #67 aggregate.

#### Pleasanton 3/8" Pea Gravel



A 3/8" aggregate that has 100% passing the 1/2" sieve with 85-100% passing the 3/8" sieve. Typically used as a concrete aggregate and may be used in

other applications.

### Pleasanton Top Sand



A washed sand that has 100% passing the 3/8" sieve. Used for ready mix applications and may be used in other applications.

## Material Composition

The material composition of the concrete aggregates covered in this study is listed in Table 2 below.

**Table 2: Material Composition of Aggregates** 

| Substance                            | Weight (%) |  |  |  |  |  |
|--------------------------------------|------------|--|--|--|--|--|
| Natural Sand and Gravel <sup>1</sup> | 100%       |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Natural sand and gravel is a naturally occurring mineral complex that contains varying quantities of quartz (crystalline sili ca). Safety data sheet is available at: www.vulcanmaterials.com/docs/default-source/msds/3239-003-(natural-sand-and-gravel).pdf?sfvrsn=2

# LCA Study

## Study

## System boundary

This study captures the following cradle-to-gate life cycle product stages (as illustrated in Figure 1):

- A1 Extraction and processing of raw materials as well as the fuels used in the production of aggregate and maintenance of plant equipment;
- A2 Transportation of all input materials and fuels from the supplier to the gate of the sand and gravel plant;
- A3 Manufacturing including mining, transportation, crushing, screening, grading, washing, blending and loading concrete aggregate as well as the transport and processing of wastes.

| PRO                 | DUCT ST   | TAGE          |           | RUCTION<br>S STAGE                    | USE STAGE |             |        |             |               | END OF LIFE STAGE         |                          |                               |           |                  |          |
|---------------------|-----------|---------------|-----------|---------------------------------------|-----------|-------------|--------|-------------|---------------|---------------------------|--------------------------|-------------------------------|-----------|------------------|----------|
| Raw material supply | Transport | Manufacturing | Transport | Construction-<br>installation process | Use       | Maintenance | Repair | Replacement | Refurbishment | Operational energy<br>use | Operational water<br>use | De-construction<br>demolition | Transport | Waste processing | Disposal |
| A1                  | A2        | А3            | A4        | A5                                    | B1        | B2          | В3     | B4          | B5            | В6                        | В7                       | C1                            | C2        | C3               | C4       |

Figure 1. Life-Cycle Stages and Modules Source: EN:15804:2012+A1, 2013)

Except as noted above, all other life cycle stages as described in Figure 1 are excluded from the LCA study. The following processes are also excluded from the study:

- 1. Production, manufacture, and construction of manufacturing capital goods and infrastructure;
- 2. Production and manufacture of production equipment, delivery vehicles, and laboratory equipment;
- 3. Personnel-related activities (travel, furniture, office supplies);
- 4. Fuel used to transport personnel around the mine and sand & gravel facility;
- 5. Energy and water use related to company management and sales activities.

# LCA Study

The main processes included in the system boundary are illustrated in Figure 2.

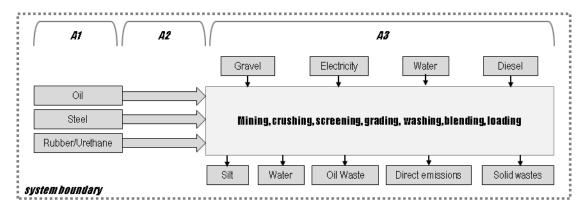



Figure 2. Main Processes Included in System Boundary

Electricity impacts are calculated based on the 2010 resource mix at the level of North American Electricity Reliability Council (NERC) Western Electricity Coordinating Council Region (EPA, 2010).<sup>2</sup>

## **Life Cycle Inventory**

All primary data are average data for the 2014 calendar year.

Secondary data were selected from the US-EI database v2.2.3 (EarthShift, 2014). This database contains the US LCI database (NREL, 2008) modified to include representative proxy data in place of empty or dummy processes, and the ecoinvent v2.2 database (ecoinvent, 2010), modified to replace European electrical grids with US electrical grids.

### **Key Assumption**

Electricity usage is based on theoretical hourly usage<sup>3</sup> (from engineering diagrams) converted to annual usage based on measured annual run times and an assumed load on all motors of 73%<sup>4</sup>. The actual load on individual motors could be higher or lower.

### **Environmental Impact Assessment**

The environmental impact per metric ton of aggregate is reported for the life cycle impact categories outlined in the referenced PCR (International EPD® System, 2015) and provided in Table 3.

Water impacts are calculated based on net fresh water consumption as defined in Appendix D of the reference PCR (International EPD® System, 2015): "Net fresh water entering the system being studied that is not returned to the same drainage basin that it origin from, or returned to the same drainage basin with lower quality will be regarded as consumed." The water used at the Pleasanton Sand and Gravel facility is pumped from the mine, used for screening the aggregate, then sent back to settling ponds in the mine. As the water is returned to its original drainage basin it is not considered consumed.

<sup>&</sup>lt;sup>2</sup> Note: this study does not conform to the referenced PCR which requires the use of national electricity grid mixes. We have use a regional grid mix in anticipation that this will be required in a US PCR.

<sup>&</sup>lt;sup>3</sup> Theoretical usage was calculated by multiplying each motor's horsepower (hp) specification by 746 watts/hp.

 $<sup>^4</sup>$  Measured 2014 electricity use allocated to the sand and gravel facility is 73% lower than theoretical.

LCA Study

Table 3. Category Indicators, Reported Units, Abbreviation, and Impact Assessment Method

| Category Indicator                                             | Units                 | Abbreviation |  |  |
|----------------------------------------------------------------|-----------------------|--------------|--|--|
| Global warming potential                                       | kg CO2 eq             | GWP          |  |  |
| Acidification potential                                        | kg SO <sub>2</sub> eq | AP           |  |  |
| Eutrophication potential                                       | kg N eq               | EP           |  |  |
| Photochemical ozone creation potential                         | kg O₃ eq              | POP          |  |  |
| Ozone depletion potential                                      | kg CFC-11 eq          | ODP          |  |  |
| Use of renewable primary energy                                | MJ                    | rPE          |  |  |
| Use of non-renewable primary energy                            | MJ                    | nrPE         |  |  |
| Use of renewable primary energy resources as raw materials     | MJ                    | rPEM         |  |  |
| Use of non-renewable primary energy resources as raw materials | MJ                    | nrPEM        |  |  |
| Use of secondary materials                                     | Kg                    | SM           |  |  |
| Use of renewable secondary fuels                               | MJ                    | rSF          |  |  |
| Use of non-renewable secondary fuels                           | MJ                    | nrSF         |  |  |
| Use of net fresh water                                         | m³                    | nFW          |  |  |
| Non-hazardous waste disposed                                   | kg                    | nhW          |  |  |
| Hazardous waste disposed                                       | kg                    | hW           |  |  |
| Radioactive waste disposed                                     | kg                    | rW           |  |  |

Explanatory materials may be requested by contacting:

Edward H. Luce
Western Division Quality Control Manager
500 North Brand Blvd., Suite 500
Glendale, CA 91203-1923
619-843-3069
lucee@vmcmail.com

Additional environmental policy and management system information is available at csr.vulcanmaterials.com.

Impact results per 1 metric ton of product are outlined in Table 3 below.

Table 4: Cradle-to-Gate Impact Results for Aggregates Covered in Study

| Aggregate       |              |          |          |          |          |          |          |          |          |          |           |          |          |
|-----------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|
| Impact category | Unit         | RD       | 1/2" Cr  | 3/4" Cr  | 3/8" Cr  | MFG Sand | C2Base   | C2Perm   | C2PermCr | 1" X #4  | 3/4" X #4 | PG       | wcs      |
| GWP             | kg CO₂ eq    | 6.06     | 6.06     | 6.06     | 6.06     | 7.58     | 6.21     | 5.17     | 6.09     | 4.69     | 4.70      | 4.82     | 4.89     |
| AP              | kg SO₂ eq    | 0.05     | 0.05     | 0.05     | 0.05     | 0.06     | 0.05     | 0.05     | 0.05     | 0.04     | 0.04      | 0.04     | 0.04     |
| EP              | kg N eq      | 0.01     | 0.01     | 0.01     | 0.01     | 0.02     | 0.01     | 0.01     | 0.01     | 0.01     | 0.01      | 0.01     | 0.01     |
| POP             | kg O₃ eq     | 0.73     | 0.73     | 0.73     | 0.73     | 0.78     | 0.94     | 0.85     | 0.90     | 0.68     | 0.68      | 0.69     | 0.69     |
| ODP             | kg CFC-11 eq | 1.59E-07 | 1.59E-07 | 1.59E-07 | 1.59E-07 | 2.03E-07 | 1.67E-07 | 1.36E-07 | 1.63E-07 | 1.20E-07 | 1.20E-07  | 1.24E-07 | 1.26E-07 |
| rPE             | MJ           | 7.54     | 7.54     | 7.54     | 7.54     | 10.01    | 6.80     | 5.35     | 6.79     | 5.31     | 5.33      | 5.52     | 5.65     |
| nrPE            | MJ           | 90.7     | 90.7     | 90.7     | 90.7     | 113.2    | 93.9     | 78.2     | 92.0     | 70.3     | 70.5      | 72.3     | 73.4     |
| rPEM            | MJ           | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00      | 0.00     | 0.00     |
| nrPEM           | MJ           | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00      | 0.00     | 0.00     |
| SM              | Kg           | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00      | 0.00     | 0.00     |
| rSF             | MJ           | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00      | 0.00     | 0.00     |
| nrSF            | MJ           | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00      | 0.00     | 0.00     |
| nFW             | m³           | 0.11     | 0.11     | 0.11     | 0.11     | 0.15     | 0.10     | 0.08     | 0.10     | 0.08     | 0.08      | 0.08     | 0.08     |
| nhW             | kg           | 0.14     | 0.14     | 0.14     | 0.14     | 0.16     | 0.18     | 0.16     | 0.17     | 0.12     | 0.12      | 0.12     | 0.12     |
| hW              | kg           | 7.84E-05 | 7.84E-05 | 7.84E-05 | 7.84E-05 | 1.02E-04 | 7.59E-05 | 6.08E-05 | 7.49E-05 | 5.70E-05 | 5.72E-05  | 5.91E-05 | 6.03E-05 |
| rW              | kg           | 1.20E-04 | 1.20E-04 | 1.20E-04 | 1.20E-04 | 1.59E-04 | 1.10E-04 | 8.69E-05 | 1.10E-04 | 8.55E-05 | 8.58E-05  | 8.88E-05 | 9.07E-05 |

<sup>&</sup>lt;sup>5</sup> This EPD does not conform to the ISO 14025 standard for Type III EPD's which are subject to the administration of a program operator and independent verification. Upon publication of a U.S.-centric PCR, currently being developed by ASTM, Vulcan Materials Company will update these results to conform to the new PCR and then undergo independent verification with a program operator to publish a Type III EPD.

This EPD only covers the cradle-to-gate life-cycle product stages. Other stages are dependent on particular scenarios that are better developed for specific building or construction works.

- EPDs of construction products may not be comparable if they do not comply with EN 15804.
- EPDs within the same product category from different programs may not be comparable.

# Works Cited

EarthShift. (2014). US-EI Database. Huntington, VT: EarthShift, LLC.

ecoinvent. (2010). The ecoinvent Database. Zurich, Switzerland: The Swiss centre for Life Cycle Inventories.

EN:15804:2012+A1. (2013). Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products. EN.

EPA. (2010). http://www2.epa.gov/energy/egrid-9th-edition-version-10-summary-tables-year-2010-data.

International EPD® System. (2015). : PCR 2012:01 Construction products and Construction services, Version 2.0, 2015-03-03.

NREL. (2008). U.S. Life Cycle Inventory Database. National Renewable Energy Laboratory.

State of California. (n.d.). Standard Specifications.